US009223575B2

a2z United States Patent (10) Patent No.: US 9,223,575 B2
Moloney 45) Date of Patent: Dec. 29, 2015
(54) PROCESSOR EXPLOITING TRIVIAL (52) US.CL
ARITHMETIC OPERATIONS CPC GO6F 9/30101 (2013.01); GOGF 9/3001
(2013.01)
(75) Inventor: David Moloney, Dublin (IE) (58) Field of Classification Search
CPC GOG6F 9/30192; GOG6F 9/30101; GO6F 9/3001
(73) Assignee: LINEAR ALGEBRA USPC e 712/226, 209, 220
TECHNOLOGIES LIMITED, Dublin See application file for complete search history.
(E)
(56) References Cited
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS
US.C. 154(b) by 724 days. 5262973 A 11/1993 Richardson
6,009,511 A * 12/1999 Lynchetal. 712/222
(21) Appl. No.: 12/531,408 6,243,806 B1* 6/2001 Koumura et al. . 7121234
7,395,297 B2* 7/2008 Steele, Jr. 708/525
(22) PCT Filed: Mar. 16, 2008 7,502,918 B1* 3/2009 Barowskietal. 712/226
(86) PCT No.: PCT/EP2008/053134 OTHER PUBLICATIONS
§371 (©)(1) Atoofian et al.; “Improving Energy-Efficiency in High-Performance
’, Processors by Bypassing Trivial Instructions”; IEE-Proc.Comput.
(2), (4) Date: Sep. 15,2009 Digit. Tech., vol. 153, No. 5, Sep. 2006.*
(87) PCT Pub.No.. W02008/110634 (Continued)
PCT Pub. Date: Sep. 18, 2008 Primary Examiner — Benjamin Geib
. s (74) Attorney, Agent, or Firm — Marsh Fischmann &
(65) Prior Publication Data Breyfogle LT.P; Kent A. [embke
US 2010/0106947 Al Apr. 29, 2010
57 ABSTRACT
L The present application relates to the field of processors and
Related U.S. Application Data in particular to the carrying out of arithmetic operations.
(60) Provisional application No. 60/911,274, filed on Apr. Many of the computations performed by processors consist of
11, 2007. a large number of simple operations. As a result, a multipli-
cation operation may take a significant number of clock
(30) Foreign Application Priority Data cycles to complete. The present application provides a pro-
cessor having a trivial operand register, which is used in the
Mar. 15,2007 (GB) .ocoooeiiiiciiciciee 0704999.2 carrying out of arithmetic or storage operations for data val-
ues stored in a data store.
(51) Imt.ClL
GOG6F 9/30 (2006.01) 14 Claims, 2 Drawing Sheets
"‘ A i
wm_ I ‘/32—'
Register File
TOR
= [o1
———»{ =00 TO2
L »{ =00 TO3
L (= o4
FPU ~ point
CALCULATION [+ CONTROL |, instruction
UNIT e

US 9,223,575 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

M. M. Islam and P. Stenstrom; “Reduction of Energy Consumption in
Processors by Early Detection and Bypassing of Trivial Operations”;
2006; IEEE.*

E. Atoofian and A. Baniasadi; “Improving Energy-Efficiency by
Bypassing Trivial Computations”; 2005; IEEE.*

J. J.Yi and D. Lilja; “Improving Processor Performance by Simpli-
fying and Bypassing Trivial Computations”; 2002; IEEE.*

S. E. Richardson; “Exploiting Trivial and Redundant Computation”;
1993; IEEE *

McCloud, Shawn, et al., “A Floating Point Unit for the 68040~
Motorola, Inc., IEEE 1990, pp. 187-190.

Richardson, Stephen E., Exploiting Trivial and Redundant Compu-
tation, IEEE 1993, Sun Microsystems Laboratories, Inc., pp. 220-
2217.

PCT International Search Report, PCT/EP2008/053134, mailed May
21, 2008.

* cited by examiner

U.S. Patent Dec. 29, 2015 Sheet 1 of 2 US 9,223,575 B2

data_0 > -

load_data

WAQ >~

data_1 >
32

\)

WA1 >

Register File

data_2 >

WA2 >

data_3

WA3

TOR

:
=0 ;= | 1O
(=0) V TO2
= =0)= | TO3
] TO4

, floating
FPU point
CALCULATION = o CONTROL" ' instruction

signals LOG IC

UNIT

Figure 1

U.S. Patent Dec. 29, 2015 Sheet 2 of 2 US 9,223,575 B2

Load Data

/
Perform Comparison for
Trivial Operand

4
Store result in Trivial
Operand Register

Check Operand
Register for Trivial
Operand

present

Trivial Calculation

not present

Normal Calculation

Figure 2

US 9,223,575 B2

1
PROCESSOR EXPLOITING TRIVIAL
ARITHMETIC OPERATIONS

RELATED APPLICATIONS

This application is a national phase of PCT Application No.
PCT/EP2008/053134, filed Mar. 16, 2008, entitled, “A PRO-
CESSOR EXPLOITING TRIVIAL ARITHMETIC
OPERATIONS,” which claims priority from GB Patent
Application No. GB0704999.2, filed on Mar. 15, 2007, and
U.S. patent application No. US60/911,274, filed on Apr. 11,
2007, which are hereby incorporated by reference into this
application.

FIELD OF THE INVENTION

The present invention relates to the field of processors and
in particular to the carrying out of arithmetic operations.

BACKGROUND OF THE INVENTION

Many of the computations performed by processors consist
of a large number of simple operations. As a result, a multi-
plication operation may take a significant number of clock
cycles to complete.

Whilst this operation is justified for complex calculations,
the same cannot be said of trivial operations, for example
multiplication of one number by 0, +1, or -1, where the
answer may be obtained in a much simpler fashion.

In certain applications, involving sparse matrices, the num-
ber of trivial operations carried out can be very significant
owing to the presence of a significant number of zeros. The
number of zeroes in a sparse matrix can be reduced or elimi-
nated by storing the matrix in a sparse format such as com-
pressed Row Storage (CRS) format, however due to the over-
heads in terms of address-generation such storage formats
often result in very poor performance on commercial com-
puter systems.

U.S. Pat. No. 5,262,973 (Richardson et al) discloses a
method for reducing the computation time where the opera-
tion is a trivial one. In particular, the method performs at least
two operations concurrently. The first operation is a conven-
tional complex arithmetic operation. The second and further
operations are performed by an operand check mechanism
which determines whether one or both of the operands is a
specific instance of a trivial operand. If one of the operands is
a specific instance of a trivial operand, the complex arithmetic
operations are halted and the check mechanism rapidly out-
puts the result of the arithmetic operation according to the
trivial operand detected. Consequently, the need to perform
complex arithmetic operations on trivial operands is avoided.
The method does not however eliminate complex operations,
it merely halts them if a determination is made that the opera-
tion is in fact a trivial one.

SUMMARY

A first embodiment provides a processor comprises a data
store for storing data values, a trivial operand register for
storing at least one flag for each data value in the data store,
the at least one flag indicating whether each stored data value
is a trivial operand, wherein the processor is configured to
employ the trivial operand register in performing instruc-
tions. The processor may comprise a computational unit
employing the trivial operand register in performing an
operation involving at least one a data value from the data
store. Suitably, the computational unit may comprise a con-

10

15

20

25

30

35

40

45

50

55

60

65

2

trol logic unit for examining the trivial operand register and
controlling the operation of a calculation unit. The processor
may further comprise a comparator configured to perform a
comparison to determine the presence of a trivial operand on
the input lines to the data store. The data store may be pro-
vided as a register-file. The processor may further comprise a
plurality of comparators, each comparator determining
whether the data at a corresponding write-port of the register-
file comprises a trivial operand. The data values are suitably
floating point values. The data store may comprise 32 bit, 64
bit or 128 bit registers. The trivial operand may comprise a 0,
-1 or 1. Advantageously, the trivial operand is uniquely a 0
value.

Suitably, the performed instruction comprises a floating
point calculation. A control logic unit may be provided for
examining the trivial operand register and controlling the
operation of a floating point calculation unit. The control
logic unit may be configured to bypass the floating point
calculation unit and provide a result directly where the cal-
culation involves a trivial operand. The result may be pro-
vided directly by setting the trivial operand register flag for
the register where the result was to be stored. Optionally, the
performed instruction comprises a data storage instruction.
The processor may further comprise a comparator configured
to perform comparisons of non-zero patterns corresponding
to vector or matrix data.

In a further embodiment, a method is provided for perform-
ing operations on a first data register in a processor, the
processor having a trivial operand register indicating the pres-
ence of a trivial operand in the first data register comprising
the step of employing the flag in the trivial operand register in
the performance of an instruction involving said first data
register.

Suitably, the method comprises the initial steps of writing
data to a first data register, performing a comparison of the
data to determine the presence of a trivial operand in the data,
and setting the flag in response to the comparison within a
trivial operand register. The step of writing the data and
performing the comparison may be performed substantially
simultaneously. The first data register may be a floating point
data register. Optionally, a plurality of individual data regis-
ters are provided, each register having an associated flag in
the trivial operand register. The plurality of individual data
registers may be provided as a register file. Optionally, the
instruction is a calculation and the trivial operand register is
employed in the control the operation of a calculation unit in
the processor. The trivial operand may comprise a 0, -1 or 1.
In one arrangement, the trivial operand is uniquely a O value.
The method may comprise the bypassing of a calculation unit
and providing a result directly where the calculation involves
a trivial operand. In this case, the result may be provided
directly by setting the trivial operand register flag for the
register where the result was to be stored. Optionally, the
performed instruction comprises a data storage instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described with reference
to the accompanying drawings in which:

FIG. 1is a schematic representation of a processor accord-
ing to an exemplary embodiment of the invention,

FIG. 2 is a flowchart of a method according to an exem-
plary embodiment of the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

The present application employs trivial operand flags to
identify whether data contained within a data store might be

US 9,223,575 B2

3

considered a trivial operand. The data store may take the form
of'any kind of memory location, depending on the individual
processor architecture. Nonetheless, for ease of explanation
the example below will be described with reference to regis-
ters andor register files. The application is not however
intended to be restricted or limited to these particular types of
data store. The contents of the flags are generated by com-
parisons of the floating-point values to known trivial values,
or by loading the results of previous comparisons from
memory, where they are stored along with the source matrix/
vector data. It will be appreciated that in the context of the
present application, a trivial operand is one which does not
require a complex calculation process to determine the result,
e.g. multiplication of two 32 bit floating bit operands where
one of the operands is 0 does not require a full 32 bit multi-
plication process to determine that the result is zero. Trivial
operands would include 1, -1 and 0.

Operands equal to an integer multiple of two may also be
considered trivial operands, as a simple shift process is
involved for division or multiplication at least in integer
operations. It will be appreciated that the larger the number of
trivial operands the greater the implementation complexity
required. Accordingly, it is preferable that the flags for trivial
operands be restricted to identifying whether the operand is a
1,-1o0r0.

In certain applications, the number of operations involving
a 0 is considerable. An example of such an application is the
field of sparse matrices, as might be employed in games
physics applications or search engines, the advantage of hav-
ing a single flag for each data register indicating whether the
value stored in the data register is a zero or not would be
considerable in terms of the potential savings in computa-
tional speed and reductions in power requirements and the
associated benefits of reduced heat. The savings are particu-
larly large when the source-matrix is used repeatedly, for
instance Google’s search matrix is an n X n sparse connectiv-
ity matrix, where n~3 billion and 6-7 non-zero entries per
column. Google’s matrix is updated once per week and is
queried thousands of times per second 24 hours per day, 365
days per year.

An exemplary implementation will now be described for
use with such sparse matrix applications, in which advanta-
geously the trivial operand is determined to be a 0. The
exemplary implementation, as illustrated in FIG. 1, provides
a single-precision 32 bit data register application, although it
will be appreciated that the exemplary method as illustrated in
FIG. 2 may be applied to other configurations including
double and higher precisions.

The exemplary processor has a register file having an array
of registers contained therein. In the exemplary arrangement
shown, there are four 32 bit registers. The register file may be
implemented as a fast static RAM with multiple ports. Suit-
ably, the register file is arranged with dedicated read and write
ports rather than reading and writing through the same port.
Although, the use of a register file is advantageous, the reg-
isters may be implemented less advantageously using indi-
vidual flip-flops, high speed core memory, thin film memory,
and other memory techniques.

As with other processors, the data for a register file may be
loaded from a (floating point) computational unit after a com-
putation and similarly data from a register file may be pro-
vided to a computational unit for use in a computation.

Each of the write ports to the register file has 32 data lines.
Inthe case of single precision floating point numbers, the first
bit is a sign bit, followed by eight bits of an exponent and 23
bits for a mantissa. 31 data lines must be compared (compari-
son of sign bit not required) to determine whether the value of

20

25

40

45

55

4

the mantissa for that register is zero. The single bit output of
the comparator is written to a corresponding bit within the
trivial operand register. The writing of the output from the
comparator is controlled by the write line for the write line for
the register to the register file. It will be appreciated that
whilst the illustration in FIG. 2 demonstrates that the loading
of data occurs first, it will be appreciated that the comparison
and loading may occur simultaneously. Moreover, in circum-
stances where the trivial operand data is stored with the data
itself in memory, no comparison may be required as the trivial
operand register values may be directly loaded.

An advantage of this arrangement is that no additional
clock-cycles are required to perform comparisons as they are
done “for free” in parallel with register-file writes.

The contents of the trivial operand register may be
employed to control the operation of floating-point units in
order to conserve power and/or reduce computational latency.
In this arrangement, control logic may be provided to read
bits from the trivial operand register corresponding to the
registers for the input operands to the floating-point opera-
tion. The control signals required to control execution of the
floating-point operator may then be generated according to
the table below. In addition to their use in the compression/
decompression of floating-point data the MCB bitmap regis-
ter contents can also used

FP operation SrcA sreB dst dst_MCB
add (A +B) meb == B B 1
A mcb == A 0
mcb == mcb == 0.0 0
sub (A - B) meb == B -B 1
A mecb ==0 A 1
mcb == mcb == 0.0 0
multiply (A * B) meb == B 0.0 0
A mcb == 0.0 0
mcb == mcb == 0.0 0
divide (A/B) meb ==0 B 0.0 0
A mcb == inf 1
square-root (A) meb == 0.0 0

Inpractice, the proposed scheme may easily be extended to
an arbitrary number of register-file write-ports and to register-
files with an arbitrary number of entries.

This logic has the effect of replacing a power-hungry float-
ing-point operation with a simple logical function which
executes in a single cycle as opposed to several pipelined
cycles in the case of the full floating-point operation. This has
the combined of reducing power-dissipation and increasing
the effective FLOPS throughput of the proposed processor
when compared to a conventional processor.

In the cases where the results of a floating-point operation
are zero (0.0 floating-point value) the floating-point operation
need not be carried out and the trivial operand bit correspond-
ing to the destination register in the register-file may be set to
zero by appropriate logic, i.e. in some arrangements it is not
necessary to write the result into the register file. In such
arrangements, the processor may be adapted to employ the
contents of the trivial operand register when writing data from
the register file.

Although the present application is directed to conducting
floating point computations, a trivial operand register may
also be used for other non-computational purposes including
the acceleration of data storage from the register file and the
processor generally to external memory, and a test for rapid
comparison of vector/matrix non-zero patterns as a precursor
to performing an entry by entry comparison on a matrix which

US 9,223,575 B2

5

would be computationally expensive. Such an application is
described in a co-pending application filed by the assignee of
the present application.

The words comprises/comprising when used in this speci-
fication are to specify the presence of stated features, integers,
steps or components but does not preclude the presence or
addition of one or more other features, integers, steps, com-
ponents or groups thereof.

The invention claimed is:

1. A processor comprising:

a data store for storing data values, and

a trivial operand register for storing at least one flag for

each data value in the data store, the at least one flag
indicating whether each stored data value is a trivial
operand, wherein:

the processor is configured to employ the trivial operand

register in performing instructions;

the data store is provided as a register-file; and

the processor further comprises a plurality of comparators,

wherein each of the comparators is connected directly to
a corresponding write-port on the input lines of the reg-
ister-file and wherein each of the comparators deter-
mines whether data at the corresponding write-port on
input lines of the register-file comprises a trivial oper-
and.

2. A processor according to claim 1, wherein the processor
comprises a computational unit employing the trivial operand
register in performing an operation involving at least one a
data value from the data store.

3. A processor according to claim 2, wherein the compu-
tational unit comprises a control logic unit for examining the
trivial operand register and controlling the operation of a
calculation unit.

4. A processor according to claim 1, wherein the data
values are floating point values.

5. A processor according to claim 1, wherein the data store
comprises 32 bit, 64 bit or 128 bit registers.

6. A processor according to claim 1, wherein the trivial
operand comprises a 0, -1 or 1.

10

25

30

6

7. A processor according to claims 1, wherein the trivial
operand is uniquely a 0 value.

8. A processor according to anyone of claims 1, wherein the
performed instruction comprises a floating point calculation.

9. A processor according to claim 8, wherein a control logic
unit is provided for examining the trivial operand register and
controlling the operation of a floating point calculation unit.

10. A processor according to claim 9, wherein the control
logic unit is configured to bypass the floating point calcula-
tion unit and provide a result directly where the calculation
involves a trivial operand.

11. A processor according to claim 10, wherein the result is
provided directly by setting the trivial operand register flag
for the register where the result was to be stored.

12. A processor according to claims 1, wherein the per-
formed instruction comprises a data storage instruction.

13. A processor according to claims 1, wherein the proces-
sor further comprises a comparator configured to perform
comparisons of non-zero patterns corresponding to vector or
matrix data.

14. A method for performing operations on a first data
register in a processor, the processor having a trivial operand
register indicating the presence of a trivial operand in the first
data register comprising the steps of:

employing a flag in the trivial operand register in the per-

formance of an instruction involving said first data reg-

ister,

further comprising the initial steps of:

a) writing data to a first data register,

b) performing a comparison of the data to determine the
presence of a trivial operand in the data, wherein the
comparison is performed within a plurality of com-
parators, wherein each of the comparators is con-
nected directly to a corresponding write port on an
input line of the first data register, and

c) setting the flag in response to the comparison within
the trivial operand register,

wherein the step of writing the data and performing the

comparison are performed simultaneously.

#* #* #* #* #*

